Нейрореабилитация пациентов со зрительным неглектом: нарративный обзор эволюции идей от А.Р. Лурии до современных клинических протоколов



Цитировать

Полный текст

Аннотация

ВВЕДЕНИЕ: В когнитивной нейропсихологии разработаны различные методы реабилитации пациентов с синдромом неглекта. Вместе с тем в луриевской нейропсихологической реабилитации этот вопрос не находился в центре внимания.
ЦЕЛЬ: Сопоставить пути восстановления высших психических функций, предложенные А.Р. Лурией, с современными подходами когнитивной реабилитации пациентов с левосторонним пространственным игнорированием, в основе которых лежат представления о восходящих (bottom-up) и нисходящих (top-down) процессах внимания.
МЕТОДЫ: Поиск работ проводили в электронных базах данных PubMed, Scopus, Web of Science, eLIBRARY.RU за период с 1984 по 2024 г. Источники включали в обзор, если в них присутствовали сведения о техниках преодоления левостороннего зрительного неглекта и оценке их эффективности. При отборе публикаций тип исследования не учитывали.
РЕЗУЛЬТАТЫ: На основе анализа 56 исследований, включенных в обзор, впервые сопоставили методы реабилитации левостороннего неглекта и путей восстановления высших психических функций в концепции Лурии. Результатом стала ревизия систематики восстановительных подходов с выделением нового направления, ориентированного на расширение/коррекцию возможностей ведущей афферентации функциональной системы (направленная коррекция).
ЗАКЛЮЧЕНИЕ: Ни один из существующих методов преодоления левостороннего зрительного неглекта не является лидирующим по своей эффективности. Наилучшие результаты показывают методы, направленные на перестройку функциональной системы и опирающиеся на произвольность и опосредованность, что во многом соотносится с нисходящими процессами внимания (top-down)

Полный текст

INTRODUCTION

Neglect syndrome (NS) is a psychoneurological disorder characterized by the inability to respond to stimuli presented on the opposite side of the affected hemisphere [1]. NS may result from cerebrovascular accidents (stroke), traumatic brain injury, and brain damage of other etiologies [2]. It is a relatively common and disabling consequence of stroke and is more pronounced in patients with right hemisphere damage [3]. Right-sided neglect is significantly less common (24%) than left neglect (33–85%) [2].

International studies on rehabilitation methods for patients with NS tend to analyze this disorder as an attention impairment consisting of bottom-up and top-down processes [4]. The proposed approaches to the rehabilitation of patients with NS are based on these processes [5, 6].

The top-down processes rely on the patients’ conscious, voluntary involvement. They direct attention towards the space opposite the affected hemisphere [7]. Such methods based on top-down processes may be difficult to apply in cases of severe NS [8].

Bottom-up processes draw on remaining mechanisms of neural plasticity. They influence physiological functions through sensory stimulation, environmental changes, or motor adaptation, bypassing potential regulatory deficits [9].

Currently available methods for NS are based on top-down or bottom-up frameworks or combine elements of both [10]. By contrast, traditional Russian neuropsychological rehabilitation has mainly focused on overcoming aphasic speech disorders rather than NS. Therefore, comparing international NS rehabilitation with the Russian paradigm for restoring HMF is an important task.

This comparison is necessary because Russian and international neuropsychology differ in how they understand the mechanisms underlying mental function recovery. In addition, Russian neuropsychologists face difficulties in applying rehabilitation tools developed abroad for patients with left visual neglect.

The aim of this study is to provide a comparative analysis of A.R. Luria's approach for restoring HMF and existing approaches within the cognitive paradigm for rehabilitating patients with left-sided spatial neglect. These approaches will be evaluated based on concepts of “bottom-up” and “top-down” attention processes.

 

METHODS

Eligibility criteria

The review included peer-reviewed articles that met the following criteria:

  • reported on an intervention for left-sided visual neglect and contained an objective assessment of the intervention's effectiveness;
  • analyzed changes in NS over time following the use of specific rehabilitation interventions;
  • published in English, Russian, German, and French;
  • encompassed any study design, including clinical studies, meta-analyses, systematic reviews, and original research articles.

Studies were excluded from the review if they contained data involving patients with NS combined with psychotic symptoms, aphasia, or developmental disorders.

 

Information sources

The search was conducted in the PubMed, Scopus, Web of Science, and eLIBRARY.RU electronic databases. The search period covered ran from 1984 to 2024. The lower time threshold was chosen, because rehabilitation practice at that time began to shift from isolated methods to a combined approach integrating functional (cognitive) and holistic (social) strategies [11].

 

Search strategy

The search query included the following keywords in Russian and English (as well as their combinations): “neglect syndrome”, “rehabilitation of spatial neglect”, “unilateral disregard”, “prism adaptation”, “visual search”, “transcranial magnetic stimulation”, “stroke”, “hemineglect”, “motor neglect”, “neglect”, “personal neglect”, “representational neglect”, “sensory neglect”, “unilateral spatial neglect”, “neurorehabilitation”, “neuropsychological rehabilitation”, “visuospatial neglect”, and “treatment outcome”.

The search query was formulated by G.K.S. and D.D.T. and approved by all co-authors.

 

Selection process

Primary screening was performed by reviewing article titles and abstracts and making a preliminary assessment of their eligibility. Articles that passed this stage underwent full-text analysis to determine whether they met the inclusion and exclusion criteria. Three authors (G.K.S., D.D.T., V.A.P.) independently screened the articles, with subsequent confirmation by two additional authors (A.M.B., E.V.V.). Disagreements were resolved by three authors (M.S.K., A.A.S., N.A.V.).

The database search found 139 articles. After screening titles and abstracts, 73 publications were considered potentially relevant. Following full-text review, 56 publications met the eligibility criteria and were included in the final analysis.

 

Data analysis

The authors used a descriptive approach, involving analysis and evaluation of publications that reported on the effectiveness of rehabilitation methods for patients with NS.

No risk-of-bias assessment was performed, as this was not required for the aims of our narrative review.

 

RESULTS

Luria’s approaches for restoring HMF

Approaches to restoring cognitive functions have long been discussed in the scientific literature [12–14]. In his monographs, Luria [15–17] identified three main approaches: disinhibition of the suppressed functional system (FS), substitution (vicariation), and fundamental rearrangement of impaired activity. These pathways require a careful study of their mechanisms and interrelations in patient rehabilitation [15].

We analyzed Luria's pathways for restoring HMF and modern rehabilitation tools to develop the following classification (Table 1).

Table 1. Classification of approaches for restoring higher mental functions

Recovery

Recovery type

Description

Physiological

Spontaneous

Disappearance of “systemic shock” or diaschisis without intervention by specialists; spontaneous vicariation.

Targeted

Diaschisis disappears under medical or other targeted physiological influence.

Psychological

Spontaneous

Compensatory mechanisms unconsciously used by the patient.

Targeted

Correction of the afferentation existing in the psychological FS. Rearrangement of the FS structure: an intra-system rearrangement, with the use of FS elements that have already been used in it, or an intersystem rearrangement (the missing element of the FS is replaced by a new one that has not been previously used in this FS).

Change in the level (voluntary, involuntary) of the FS functioning.

Note: FS — functional system.

 

Rearrangement of the FS structure and change in the level of its functioning can occur together [18, 19]. For example, the use of external cues involves the use of an additional afferent element, which at the same time serves as a sign, allowing a switch in the function of the FS from an involuntary level to a voluntary one.

Rehabilitation methods for patients with NS based on international concepts of bottom-up and top-down attention can be theoretically and methodologically justified within the Russian paradigm.

Understanding these methods within Luria’s framework will allow Russian neuropsychologists to understand better the mechanisms underlying NS intervention. This may contribute to a more appropriate application of these methods.

 

Rehabilitation methods aligned with Luria’s disinhibition pathway

The pathway of FS disinhibition was first described by Monakov, who identified the mechanism of diaschisis [12].

Inhibited functions can be recovered through different approaches: pharmacological or physiological interventions that affect neurotransmitter metabolism and restore synaptic conduction, or by changing the mental attitudes of the individual [14].

The mechanism underlying FS disinhibition suggests that this pathway belongs to both targeted and spontaneous pathways of restoring HMF. In both cases, the FS has the same constituent elements [16].

Transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) are commonly used non-invasive brain stimulation methods [20, 21].

TMS enables direct stimulation of cortical neurons. The physiological mechanism underlying the therapeutic efficacy of TMS involves long-term potentiation, which forms the basis of neuroplasticity [22]. However, there is no consensus on how long the exposure should last to induce plastic changes in the nervous system [9].

The efficacy of TMS and tDCS was assessed using a meta-analysis that analyzed 12 studies involving 168 subjects [23]. Most patients had their first right-hemisphere stroke with cortical lesions. All studies were conducted in the subacute phase (4 weeks to 6 months), except for one study conducted in the acute phase (less than 4 weeks) [23]. Three studies used tDCS, and nine employed repetitive transcranial magnetic stimulation (rTMS). These studies evaluated the severity of NS with different outcomes. The most used tests were the Line Bisection Test and the Behavioral Inattention Test (BIT) [24].

According to the study evidence, tDCS tended to reduce the severity of NS, although the results were inconsistent, while TMS had a positive effect on NS [21, 22]. One study also examined the combined use of tDCS and neck muscle vibration, which may help correct subjective vertical orientation in patients with NS [25, 26]. However, there is a need for further studies with larger samples to clarify the role of non-invasive brain stimulation in the management of NS.

Because these methods are purely physiological, distinguishing top-down and bottom-up processes within the psychological process of attention is not appropriate.

Thus, TMS can be compared with a targeted physiological disinhibition of the brain’s FS. In clinical practice, this method is important for optimizing the functional state of neuronal networks involved in simultaneous attention.

 

Rehabilitation methods aligned with Luria’s rearrangement pathway

Top-down processes

Top-down approaches used internationally in NS rehabilitation align well with the FS rearrangement pathway according to Luria [15–17]. These methods focus on the patient’s conscious, voluntary acquisition of new ways to carry out actions. Currently, they are central to NS management, as physiological methods alone can create the basis for simultaneous attention but cannot restore the psychological process itself. Each of the methods presented below has shown effectiveness, but none is optimal.

  1. Visual scanning training.

Visual scanning training involves training the patient to turn the head and trunk toward the neglected side [27]. The method aims to improve spatial scanning by reorienting the egocentric reference system, which is most used by psychologists in rehabilitative care [28]. It requires precise instructions: the examiner asks the patient to find the left edge of the page marked with a wide red line before reading the next line [25]. A reference point is thus created, and the patient learns to navigate in space and scan the visual field from left to right during tasks such as reading and writing.

Despite its frequent use in clinical practice, several randomized controlled trials have evaluated its efficacy [27, 29–32]. The studies that showed improvements in visuospatial search parameters were limited to paper-and-pencil tests [30, 32]. Long-term outcomes were not recorded to confirm sustained improvements. Some studies showed limited transfer of training effects to patients’ daily functioning [29, 32, 33].

  1. The “spotlight” strategy.

Within the “spotlight” strategy, patients focus on specific stimuli (similar to using a light in a dark room) while neglecting others [34–36]. Here, attention is conceptualized as a spotlight that can switch from place to place just as a beam of light moves across a dark room [36].

  1. The “lighthouse” strategy.

This method is a continuation of the previous strategy. It uses a visual metaphor in which patients imagine themselves as a lighthouse, with their eyes and head as a beam of light that must “illuminate” the space from right to left [37]. This mental representation helps to encourage patients to scan their surroundings systematically, thereby improving attention to the side of neglect [38]. This approach requires patients to have a certain capacity for abstraction and associative memory [37].

Visual scanning training with the “lighthouse” and “spotlight” strategies illustrates intra-system rearrangements in Luria’s framework.

 

Bottom-up processes

Methods based on bottom-up attention processes align with the FS rearrangement pathways in Luria’s framework [14–16]. Such methods focus on activating involuntary levels of attention.

As with top-down attention, individual bottom-up methods are not central to the neuropsychological rehabilitation of patients with NS. However, they can be used as supplements to top-down approaches in clinical practice.

  1. Vestibular stimulation.

Modern methods of vestibular stimulation include caloric and galvanic vestibular stimulation. Caloric vestibular stimulation usually involves the instillation of cold water into the ear opposite the affected hemisphere [39]. Galvanic vestibular stimulation applies a weak electric current on the mastoid processes of the temporal bone [40].

Vestibular stimulation is based on the relationship between neural structures involved in vestibular and spatial processing and an impaired spatial reference system, including the bodily reference system [39]. This is supported because the subjective orientation of the body is shifted to the right in patients with left NS. This involves additional afferentations (intra-system rearrangement in Luria’s framework).

The efficacy of these methods was evaluated in a meta-analysis of 17 studies that included 180 patients with stroke-related NS [41]. Results showed no significant differences between the effects of galvanic vestibular stimulation and placebo conditions, whereas caloric vestibular stimulation showed significant improvements in NS symptoms compared with pre-stimulation findings [41].

  1. Optokinetic stimulation.

Optokinetic stimulation represents intra-system rearrangement within Luria’s rehabilitative framework. In this procedure, the patient follows stimuli moving from right to left across the screen with their eyes. Kerkhoff et al. [42] showed that this stimulation decreases the auditory manifestations of NS.

In this procedure, the eye movements are guided by instructions, which alters their psychological structure. The study by Leontiev and Zaporozhets [43] revealed the relationship between the characteristics of the movement and the way the task is set. Voluntary movements that are similar in their geometry and anatomy [43] will be performed differently if the subjects have different tasks. When such movements are incorporated into another meaningful voluntary task, they can become automated.

  1. External cues.

Another method of rehabilitation is using external cues, which draw the patient’s involuntary attention to the side of spatial neglect [44, 45]. External cues include visual, auditory, and cutaneous kinesthetic cues (limb activation method) [46]. The examiner uses bright objects located on the left as visual cues [5]. Non-verbal auditory cues, such as sound signals, are initially presented on the right side of space to capture attention [42]. Gradually, the signal moves to the left side, causing the patient to direct their eyes to the left involuntarily. Pilot studies have shown that auditory cues can reduce NS symptoms [47].

A similar auditory cue is used in the limb activation method [28, 33, 48]. A sound-producing device is attached to one of the left limbs. The device can operate in two modes: emitting sounds at fixed intervals regardless of limb movement [33, 48], or activating when the limb remains unused for an extended period. Rehabilitation with this method was associated with reduced NS symptoms across personal, peripersonal, and locomotor space [47–49]. Following treatment, improvements in peripersonal space and overall motor function of the left limbs continued for 18-24 months [48, 49].

External cues that add an afferent element and shift the FS to a more voluntary level can be interpreted, within Luria’s rehabilitative framework, as part of the FS rearrangement pathway.

  1. Use of biofeedback (neurofeedback).

Rehabilitation outcomes are more effective if neuropsychological and neurobiological methods are more integrated [50]. For example, the “neurofeedback” method is based on the finding that the function of the frontoparietal control network in the right hemisphere is impaired in NS [51]. This method activates the network during cognitive tasks using feedback from electroencephalography and real-time functional magnetic resonance imaging. Improved visuospatial search was demonstrated in patients undergoing this procedure [52].

Using neurofeedback is possible because of an intra-system rearrangement, as it increases the level of voluntariness.

 

Rehabilitation methods for expanding or adjusting the leading afferent input of the functional system

  1. Prism adaptation.

Rossetti et al. [53] used wide-field prismatic lenses that shifted the patient’s field of view by 10 degrees to the right. Patients wore the prismatic glasses and performed tasks involving pointing to visual targets on both sides of their body’s midline. The position of the head was stabilized with a chin rest and controlled by the investigators to minimize movement. The duration of training with prismatic lenses varied from 2 to 5 minutes. Results were recorded before and after the training. Prism adaptation produced significant improvements in midline pointing tasks and in classical paper-and-pencil neuropsychological tests assessing NS. These improvements persisted for at least 2 hours after the lenses were removed [54].

A randomized controlled study [55] assessed the long-term sensorimotor and therapeutic effects of prism adaptation. Although patients showed significant sensorimotor changes after prism adaptation, these improvements did not result in sustained repetitions in functional independence in daily life. Prism adaptation effectively decreases the manifestations of NS in the short term. However, a more intensive and prolonged intervention is required for long-term therapeutic results.

Studies have also shown that NS symptoms are temporarily reduced after prism adaptation. However, the therapeutic effect often disappears after a few weeks [56]. One explanation for this short-lived effect is that prism adaptation promotes a spatial attention shift, increasing exploratory eye movements toward the neglected side. However, it does not produce lasting changes in visual perception on that side [57]. Prism adaptation can temporarily improve the patient’s orientation on the side of neglect, but does not profoundly affect the cognitive perception of this area [58].

  1. Eye patching.

The method involves placing a bandage over the intact half of the patient’s visual field on their glasses or using half-occluded sunglasses [59–61]. These devices use a transparent or shaded lens to reduce visual stimuli from the intact field of view. The procedure is based on Franz’s ideas, which propose that these conditions direct patients with left NS to attend to the left half of their visual field [62]. By occluding the right half of the visual field, information is prevented from reaching the intact left hemisphere. This promotes greater involvement of intact regions of the damaged right hemisphere in task performance [59, 61].

The results confirm the positive influence of the method regarding head turns and spontaneous eye movements to the left neglected side [25, 39].

  1. Mirror therapy.

This method involves placing a mirror along the patient’s midline, creating the illusion of movement of the paretic and/or neglected limb [59, 63–65]. The intact limb “performs” various tasks [64-66]. The illusion is thought to activate motor areas of the damaged right hemisphere, since illusions activate the same part of the brain as real movements [67]. Mirror therapy was originally used in the rehabilitation of patients with paresis but was later applied to those with motor NS [63, 65].

 

Systematization of NS rehabilitation methods and their comparison with Luria’s pathways for restoring HMF

The methods described above and presented in integrative classification within Luria’s framework for restoring HMF are shown in Table 2.

Table 2. Comparison of pathways for restoring higher mental functions with neglect syndrome rehabilitation methods

Rehabilitation methods comparable to the FS disinhibition pathway according to A.R. Luria

Non-invasive brain stimulation: TMS and tDCS

Rehabilitation methods comparable to the FS rearrangement pathway according to A.R. Luria

Top-down processes

Visual scanning training

The “spotlight” strategy

The “lighthouse” strategy

Bottom-up processes

Vestibular stimulation (CVS and GVS)

Optokinetic stimulation

External cues

Use of biofeedback (neurofeedback)

Rehabilitation methods aimed at expanding/adjusting the potential of the leading afferentation of the FS (targeted adjustment)

Prism adaptation

Eye patching

Mirror therapy

Note: CVS — caloric vestibular stimulation; FS — functional system; GVS — galvanic vestibular stimulation; tDCS — transcranial direct current stimulation; TMS — transcranial magnetic stimulation.

 

Most of the methods presented above can be used in a virtual environment. This is not a new rehabilitation tool, but a technology that can increase the diversity of stimuli [68], reach more patients per unit of the examiner’s working time, and decrease the costs of rehabilitation personnel [69]. However, the evidence confirming the effectiveness of this tool does not suggest its practical value [70].

 

DISCUSSION

A meta-analysis comparing the efficacy of various rehabilitation methods in patients with NS included 37 randomized controlled studies [10]. It did not reveal the efficacy of any specific rehabilitation methods because of small sample sizes, lack of objectivity, assessments of the generalization of gained skills, and longitudinal studies [10]. However, combining methods for the rehabilitation of patients with NS was more effective than any of the methods alone [8, 10, 70–73].

Among rehabilitation methods conventionally used in NS, the publication by Cicerone et al. [74] is noteworthy. Based on 10 studies on NS rehabilitation, the authors conclude that visual scanning training (standard level) is the preferable option. Recommended methods include microcomputer exercises, limb activation techniques, and mirror therapy, which are used as complementary tools, increasing the effectiveness of visual scanning training. Using electronic technologies in visual scanning training is possible. According to the authors, the primary method of rehabilitation is the visual scanning strategy. Other methods can only supplement it and are not recommended as separate tools, which is explained because improved functioning is associated with compensation [74]. The authors conclude that the top-down pathway is the most effective one in the cognitive rehabilitation of patients with NS [74]. Compensation is a directed, conscious attempt to overcome the deficit, which is consistent with Luria’s idea of FS rearrangement [16, 17].

The main limitation of our review is the 40-year span of publications analyzed. This limitation is because of changes in the perception of neurological rehabilitation in the late 1980s. The period is characterized by the gradual introduction of both methods consistent with the functional and holistic approaches to rehabilitation [11].

In addition, the studies included in the review were noticeably heterogeneous, as the diagnostic methods varied significantly. Participant samples differed in terms of rehabilitation phase (acute, subacute, etc.), tools employed, and duration of the rehabilitation process. Some investigators did not adhere to the principle of monotherapy: in several publications, rehabilitation was limited to a single method being evaluated, while in others, patients were simultaneously treated with other therapeutic interventions in a hospital setting.

These differences could affect the representativeness and homogeneity of results.

 

CONCLUSION

Current rehabilitation methods for NS are diverse and are commonly categorized into bottom-up and top-down approaches. Each has its advantages and limitations. A combined approach that can offset these limitations and provide a comprehensive approach to rehabilitation is preferable for rehabilitative training.

To better understand these rehabilitation methods, they were compared with Luria’s pathways for restoring impaired HMF, and a classification of psychophysiological and neuropsychological methods was developed. However, despite a large number of studies, their efficacy and superiority are still a matter of debate. Future studies should be conducted with larger samples, under stricter control, with an assessment of skill generalization, and over longer follow-up periods. The choice of specific methods should be guided by the patient’s condition, individual characteristics, and the rehabilitation goals set by specialists. Thus, integrating various methods of rehabilitation for patients with NS does not guarantee optimal recovery of social adaptation and functional independence. In conclusion, none of the discussed methods of rehabilitation in NS should be regarded as the most effective. This highlights the need to find the most effective strategy for combining the above methods and developing new ones, for example, specialized training programs including Luria’s restorative training elements.

All NS rehabilitation methods reviewed here have practical significance, as integrating physiological and psychological approaches may improve research practice and speed up recovery during the early stages of rehabilitation. The highest efficacy was shown for the methods associated with the FS rearrangement involving voluntariness and mediation, which is largely related to top-down attention.

×

Об авторах

Георгий Константинович Степанов

ФГБОУ ВО «Московский государственный университет имени М.В. Ломоносова»; ФГБНУ "Федеральный научный центр психологических и междисциплинарных исследований"

Email: stepanov.georgiy99@gmail.com
ORCID iD: 0009-0009-6950-1333
SPIN-код: 2225-0450

Научный сотрудник лаборатории консультативной психологии и психотерапии Федерального научного центра психологических и междисциплинарных исследований; аспирант факультета психологии МГУ им. М.В. Ломоносова

Россия, 119991, Россия, Москва, Ленинские горы, д. 1.; 125009, Россия, Москва, ул. Моховая, д. 9, стр. 4.

Дарья Дмитриевна Терентий

ФГБОУ ВО «Московский государственный университет имени М.В. Ломоносова»; ФГБНУ "Федеральный научный центр психологических и междисциплинарных исследований"

Автор, ответственный за переписку.
Email: yurinadd@my.msu.ru
ORCID iD: 0009-0002-9186-9993
SPIN-код: 1964-3310
Scopus Author ID: 58913200600
ResearcherId: IUQ-2665-2023

Научный сотрудник лаборатории консультативной психологии и психотерапии Федерального научного центра психологических и междисциплинарных исследований; аспирант факультета психологии МГУ им. М.В. Ломоносова

Россия, 119991, Россия, Москва, Ленинские горы, д. 1.; 125009, Россия, Москва, ул. Моховая, д. 9, стр. 4.

Виктория Александровна Пропустина

ФГБОУ ВО «Московский государственный университет имени М.В. Ломоносова»; ФГБНУ "Федеральный научный центр психологических и междисциплинарных исследований"

Email: vp4399@gmail.com
ORCID iD: 0009-0009-0133-3142
SPIN-код: 1896-6286

Научный сотрудник лаборатории консультативной психологии и психотерапии Федерального научного центра психологических и мультидисциплинарных исследований; выпускник факультета психологии МГУ им. М.В. Ломоносова

119991, Россия, Москва, Ленинские горы, д. 1.; 125009, Россия, Москва, ул. Моховая, д. 9, стр. 4.

Анатолий Анатольевич Скворцов

ФГБОУ ВО «Московский государственный университет имени М.В. Ломоносова»; ФГБНУ "Федеральный научный центр психологических и междисциплинарных исследований"

Email: skwortsow@mail.ru
ORCID iD: 0000-0002-0471-4217
SPIN-код: 6368-2850
Scopus Author ID: 21735514900
ResearcherId: H-4823-2015

Кандидат психологических наук, доцент  кафедры  психологии  образования  и педагогики  факультета  психологии  Московского  государственного  университета  имени  М.В.  Ломоносова;  научный  сотрудник  лаборатории  консультативной  психологии  и психотерапии  Федерального  научного  центра  психологических  и междисциплинарных  исследований

Россия, 119991, Россия, Москва, Ленинские горы, д. 1.; 125009, Россия, Москва, ул. Моховая, д. 9, стр. 4.

Мария Станиславовна Ковязина

ФГБОУ ВО «Московский государственный университет имени М.В. Ломоносова»; ФГБНУ "Федеральный научный центр психологических и междисциплинарных исследований"; ФГБНУ "Научный центр неврологии"

Email: kms130766@mail.ru
ORCID iD: 0000-0002-1795-6645
SPIN-код: 1570-8446
Scopus Author ID: 7801544920
ResearcherId: J-9671-2012

Д-р псих. наук, профессор кафедры нейро-и патопсихологии факультета психологии МГУ им. М.В. Ломоносова; старший научный сотрудник Научного центра неврологии; заведующий лабораторией консультативной психологии и психотерапии Федерального научного центра психологических и междисциплинарных исследований; член-корреспондент РАО

Россия, 119991, Россия, Москва, Ленинские горы, д. 1; 125009, Россия, Москва, ул. Моховая, д. 9, стр. 4.; 125367, Россия, Москва, Волоколамское ш., 80.

Наталия Александровна Варако

ФГБОУ ВО «Московский государственный университет имени М.В. Ломоносова»; ФГБНУ "Федеральный научный центр психологических и междисциплинарных исследований"; ФГБНУ "Научный центр неврологии"

Email: nvarako@mail.ru
ORCID iD: 0000-0002-8310-8169
SPIN-код: 4073-2560
Scopus Author ID: 7801575542
ResearcherId: G-8207-2015

Канд. псих. наук, старший научный сотрудник кафедры методологии психологии факультета психологии МГУ им. М.В. Ломоносова; старший научный сотрудник Научного центра неврологии; старший научный сотрудник лаборатории консультативной психологии и психотерапии Федерального научного центра психологических и междисциплинарных исследований. 

Россия, 119991, Россия, Москва, Ленинские горы, д. 1; 125009, Россия, Москва, ул. Моховая, д. 9, стр. 4.; 125367, Россия, Москва, Волоколамское ш., 80.

Алексей Михайлович Букинич

ФГБОУ ВО «Московский государственный университет имени М.В. Ломоносова»; ФГБНУ "Федеральный научный центр психологических и междисциплинарных исследований"

Email: aleksey.bukinich@mail.ru
ORCID iD: 0000-0003-0422-4717
SPIN-код: 1979-4642
Scopus Author ID: 57914763600
ResearcherId: U-1106-2018

Психолог 1-й категории кафедры методологии психологии факультета МГУ им. М.В. Ломоносова; научный сотрудник лаборатории консультативной психологии и психотерапии Федерального научного центра психологических и междисциплинарных исследований

Россия, 119991, Россия, Москва, Ленинские горы, д. 1.; 125009, Россия, Москва, ул. Моховая, д. 9, стр. 4.

Елизавета Вячеславовна Васюра

ФГБОУ ВО «Московский государственный университет имени М.В. Ломоносова»

Email: vasyurael@gmail.com
ORCID iD: 0009-0008-5472-9100
SPIN-код: 4573-4732

Студент факультета психологии МГУ им. М.В. Ломоносова

Россия, 119991, Россия, Москва, Ленинские горы, д. 1

Список литературы

  1. Vallar G. Spatial hemineglect in humans. Trends Cogn Sci. 1998;2(3):87–97. doi: 10.1016/s1364-6613(98)01145-0
  2. Dobrokhotova TA, Bragina NN, Zaitsev OS, et al. [Unilateral spatial agnosia]. Moscow: Kniga Ltd; 1996. Russian.
  3. Moore MJ, Milosevich E, Mattingley JB, et al. The neuroanatomy of visuospatial neglect: A systematic review and analysis of lesion-mapping methodology. Neuropsychologia. 2023;180:108470. doi: 10.1016/j.neuropsychologia.2023.108470
  4. Corbetta M, Shulman GL. Spatial neglect and attention networks. Annu Rev Neurosci. 2011;34:569–599. doi: 10.1146/annurev-neuro-061010-113731
  5. Marshall RS. Rehabilitation approaches to hemineglect. Neurologist. 2009;15(4):185–192. doi: 10.1097/NRL.0b013e3181942894
  6. Qi F, Nitsche MA, Ren X, et al. Top-down and bottom-up stimulation techniques combined with action observation treatment in stroke rehabilitation: a perspective. Front Neurol. 2023;14:1156987. doi: 10.3389/fneur.2023.1156987
  7. Gilbert CD, Li W. Top-down influences on visual processing. Nat Rev Neurosci. 2013;14(5):350–363. doi: 10.1038/nrn3476
  8. Carter AR, Barrett AM. Recent advances in treatment of spatial neglect: networks and neuropsychology. Expert Rev Neurother. 2023;23(7):587–601. doi: 10.1080/14737175.2023.2221788
  9. Gammeri R, Iacono C, Ricci R, et al. Unilateral Spatial Neglect After Stroke: Current Insights. Neuropsychiatr Dis Treat. 2020;16:131–152. doi: 10.2147/NDT.S171461
  10. Azouvi P, Jacquin-Courtois S, Luauté J. Rehabilitation of unilateral neglect: Evidence-based medicine. Ann Phys Rehabil Med. 2017;60(3):191–197. doi: 10.1016/j.rehab.2016.10.006
  11. Ben-Yishay Y, Rattok J, Lakin P, et al. Neuropsychological rehabilitation: Quest for a holistic approach. Semin Neurol. 1985;5(3):252–259. doi: 10.1055/s-2008-1041522
  12. von Monakow C. [Localisation in the cerebrum and functional deterioration due to cortical lesions]. Wiesbaden: JF Bergmann; 1914. German.
  13. Asratyan EA. [On the principle of relative plasticity of the nervous system]. Trudy Gosudarstvennogo instituta mozga im. V.M. Bekhtereva. 1939;11:172–183. Russian.
  14. Goldstein K. Aftereffects of brain injuries in war: their evaluation and treatment. New York: Grune & Stratton; 1942.
  15. Luria AR. Traumatic aphasia: its syndromes, psychology, and treatment. Berlin: Walter de Gruyter & Co; 1970.
  16. Luria AR. Restoration of function after brain injury. New York: MacMillian; 1963.
  17. Mecacci L. Luria's first steps in neuropsychology. Cortex. 2024;181:133–139. doi: 10.1016/j.cortex.2024.10.003
  18. Baulina ME, Skvortsov AA, Kovyazina MS, et al. Luria's Approach to the Restoration of Speech in Aphasia and the International Classification of Functioning, Disability and Health (ICFDH). Psychology in Russia: State of the Art. 2019;12(1):118–128. doi: 10.11621/pir.2019.0109
  19. Allilaire JF, Widlocher D. [Etiopathogeneic aspects of inhibition. Psychodynamic approach to inhibition]. Encephale. 1978;4(5 Suppl):473–480. French.
  20. Kesikburun S. Non-invasive brain stimulation in rehabilitation. Turk J Phys Med Rehabil. 2022;68(1):1–8. doi: 10.5606/tftrd.2022.10608
  21. Lefaucheur JP, Antal A, Ayache SS, et al. Evidence-based guidelines on the therapeutic use of transcranial direct current stimulation (tDCS). Clin Neurophysiol. 2017;128(1):56–92. doi: 10.1016/j.clinph.2016.10.087
  22. González-Rodriguez B, Serradell-Ribé N, Viejo-Sobera R, et al. Transcranial direct current stimulation in neglect rehabilitation after stroke: a systematic review. J Neurol. 2022;269(12):6310–6329. doi: 10.1007/s00415-022-11338-x
  23. Fan J, Li Y, Yang Y, et al. Efficacy of Noninvasive Brain Stimulation on Unilateral Neglect After Stroke: A Systematic Review and Meta-analysis. Am J Phys Med Rehabil. 2018;97(4):261–269. doi: 10.1097/PHM.0000000000000834
  24. Polejaeva E, Woods AJ. Behavioral inattention test (BIT). In: Kreutzer JS, DeLuca J, Caplan B, editors. Encyclopedia of Clinical Neuropsychology. Cham: Springer; 2018. p. 542–544. doi: 10.1007/978-3-319-57111-9_9134
  25. Singh-Curry V, Husain M. Rehabilitation in practice: Hemispatial neglect: approaches to rehabilitation. Clin Rehabil. 2010;24(8):675–684. doi: 10.1177/0269215509357851
  26. Millot S, Beis JM, Pierret J, et al. Innovative Therapy Combining Neck Muscle Vibration and Transcranial Direct Current Stimulation in Association with Conventional Rehabilitation in Left Unilateral Spatial Neglect Patients: HEMISTIM Protocol for a Randomized Controlled Trial. Brain Sci. 2023;13(4):678. doi: 10.3390/brainsci13040678
  27. Baker BJ, Bennison AM, Rohde KJ, et al. Effectiveness of visual scanning training at reducing left neglect: a systematic review. Open Access J Neurol Neurosurg. 2019;10(2):15–25. doi: 10.19080/OAJNN.2019.10.555781
  28. Priftis K, Passarini L, Pilosio C, et al. Visual Scanning Training, Limb Activation Treatment, and Prism Adaptation for Rehabilitating Left Neglect: Who is the Winner? Front Hum Neurosci. 2013;7:360. doi: 10.3389/fnhum.2013.00360
  29. Luukkainen-Markkula R, Tarkka IM, Pitkänen K, et al. Rehabilitation of hemispatial neglect: A randomized study using either arm activation or visual scanning training. Restor Neurol Neurosci. 2009;27(6):663–672. doi: 10.3233/RNN-2009-0520
  30. van Kessel ME, Geurts AC, Brouwer WH, et al. Visual Scanning Training for Neglect after Stroke with and without a Computerized Lane Tracking Dual Task. Front Hum Neurosci. 2013;7:358. doi: 10.3389/fnhum.2013.00358
  31. van Wyk A, Eksteen CA, Rheeder P. The effect of visual scanning exercises integrated into physiotherapy in patients with unilateral spatial neglect poststroke: a matched-pair randomized control trial. Neurorehabil Neural Repair. 2014;28(9):856–873. doi: 10.1177/1545968314526306
  32. Spaccavento S, Cellamare F, Cafforio E, et al. Efficacy of visual-scanning training and prism adaptation for neglect rehabilitation. Appl Neuropsychol Adult. 2016;23(5):313–321. doi: 10.1080/23279095.2015.1038386
  33. Robertson IH, North N. Spatio-motor cueing in unilateral left neglect: the role of hemispace, hand and motor activation. Neuropsychologia. 1992;30(6):553–563. doi: 10.1016/0028-3932(92)90058-t
  34. Robertson IH, Tegnér R, Tham K, et al. Sustained attention training for unilateral neglect: theoretical and rehabilitation implications. J Clin Exp Neuropsychol. 1995;17(3):416–430. doi: 10.1080/01688639508405133
  35. Manly T. Cognitive rehabilitation for unilateral neglect: review. Neuropsychol Rehabil. 2002;12(4):289–310. doi: 10.1080/0960201044000101
  36. Winson R, Wilson BA, Bateman A, editors. The brain injury rehabilitation workbook. New York: Guilford Publications; 2016.
  37. Niemeier JP. The Lighthouse Strategy: use of a visual imagery technique to treat visual inattention in stroke patients. Brain Inj. 1998;12(5):399–406. doi: 10.1080/026990598122511
  38. Kovyazina MS, Varako NA, Stepanov GK, et al. [Theoretical foundations for the use of the lighthouse strategy in the rehabilitation of patients with neglect syndrome]. Lurian Journal. 2024;5(3):8–28. Russian. doi: 10.15826/Lurian.2024.5.3.1
  39. Karnath HO, Dieterich M. Spatial neglect – a vestibular disorder? Brain. 2006;129(Pt 2):293–305. doi: 10.1093/brain/awh698
  40. Dlugaiczyk J, Gensberger KD, Straka H. Galvanic vestibular stimulation: from basic concepts to clinical applications. J Neurophysiol. 2019;121(6):2237–2255. doi: 10.1152/jn.00035.2019
  41. Wheeler C, Smith LJ, Sakel M, et al. A systematic review of vestibular stimulation in post-stroke visual neglect. Neuropsychol Rehabil. 2025;35(2):408–440. doi: 10.1080/09602011.2024.2338603
  42. Kerkhoff G, Keller I, Artinger F, et al. Recovery from auditory and visual neglect after optokinetic stimulation with pursuit eye movements–transient modulation and enduring treatment effects. Neuropsychologia. 2012;50(6):1164–1177. doi: 10.1016/j.neuropsychologia.2011.09.032
  43. Leontiev AN, Zaporozhets AV. [Restoring movement: psychophysiological study of hand function restoration after injury]. Moscow: Sovetskaya nauka; 1945. Russian.
  44. Duncan J. Selective attention and the organization of visual information. J Exp Psychol Gen. 1984;113(4):501–517. doi: 10.1037//0096-3445.113.4.501
  45. Posner MI, Walker JA, Friedrich FJ, et al. Effects of parietal injury on covert orienting of attention. J Neurosci. 1984;4(7):1863–1874. doi: 10.1523/JNEUROSCI.04-07-01863.1984
  46. Turgut N, Möller L, Dengler K, et al. Adaptive Cueing Treatment of Neglect in Stroke Patients Leads to Improvements in Activities of Daily Living: A Randomized Controlled, Crossover Trial. Neurorehabil Neural Repair. 2018;32(11):988–998. doi: 10.1177/1545968318807054
  47. Schenke N, Franke R, Puschmann S, et al. Can auditory cues improve visuo-spatial neglect? Results of two pilot studies. Neuropsychol Rehabil. 2021;31(5):710–730. doi: 10.1080/09602011.2020.1727931
  48. Robertson IH, McMillan TM, MacLeod E, et al. Rehabilitation by limb activation training reduces left-sided motor impairment in unilateral neglect patients: A single-blind randomised control trial. Neuropsychol Rehabil. 2002;12(5):439–454. doi: 10.1080/09602010244000228
  49. Kaufmann BC, Cazzoli D, Bartolomeo P, et al. Auditory spatial cueing reduces neglect after right-hemispheric stroke: A proof of concept study. Cortex. 2022;148:152–167. doi: 10.1016/j.cortex.2021.12.009
  50. Shipkova KM, Bulygina VG. [Neuropsychological and neurobiological basis for the recovery of higher brain functions. Modularity VS theory of system and dynamic localization of functions]. Vestnik Moskovskogo universiteta. Seriya 14. Psikhologiya. 2023;46(3):166–188. Russian. doi: 10.11621/LPJ-23-32
  51. Gouret A, Le Bars S, Porssut T, et al. Advancements in brain-computer interfaces for the rehabilitation of unilateral spatial neglect: a concise review. Front Neurosci. 2024;18:1373377. doi: 10.3389/fnins.2024.1373377
  52. Saj A, Pierce JE, Ronchi R, et al. Real-time fMRI and EEG neurofeedback: A perspective on applications for the rehabilitation of spatial neglect. Ann Phys Rehabil Med. 2021;64(5):101561. doi: 10.1016/j.rehab.2021.101561
  53. Rossetti Y, Rode G, Pisella L, et al. Prism adaptation to a rightward optical deviation rehabilitates left hemispatial neglect. Nature. 1998;395(6698):166–169. doi: 10.1038/25988
  54. Li J, Li L, Yang Y, et al. Effects of Prism Adaptation for Unilateral Spatial Neglect After Stroke: A Systematic Review and Meta-Analysis. Am J Phys Med Rehabil. 2021;100(6):584–591. doi: 10.1097/PHM.0000000000001598
  55. Rode G, Lacour S, Jacquin-Courtois S, et al. Long-term sensorimotor and therapeutical effects of a mild regime of prism adaptation in spatial neglect. A double-blind RCT essay. Ann Phys Rehabil Med. 2015;58(2):40–53. doi: 10.1016/j.rehab.2014.10.004
  56. Székely O, Ten Brink AF, Mitchell AG, et al. No short-term treatment effect of prism adaptation for spatial neglect: An inclusive meta-analysis. Neuropsychologia. 2023;189:108566. doi: 10.1016/j.neuropsychologia.2023.108566
  57. Bourgeois A, Turri F, Schnider A, et al. Virtual prism adaptation for spatial neglect: A double-blind study. Neuropsychol Rehabil. 2022;32(6):1033–1047. doi: 10.1080/09602011.2020.1864412
  58. Overman MJ, Binns E, Milosevich ET, et al. Recovery of Visuospatial Neglect with Standard Treatment: A Systematic Review and Meta-Analysis. Stroke. 2024;55(9):2325–2339. doi: 10.1161/STROKEAHA.124.046760
  59. Tavaszi I, Nagy AS, Szabo G, et al. Neglect syndrome in post-stroke conditions: assessment and treatment (scoping review). Int J Rehabil Res. 2021;44(1):3–14. doi: 10.1097/MRR.0000000000000438
  60. Sugimoto S, Fujino Y. Neglected-Field Eye Patching Improves Visual Inattention in Hemispatial Neglect: A Case Study. Prog Rehabil Med. 2017;2:20170012. doi: 10.2490/prm.20170012
  61. Machner B, Könemund I, Sprenger A, et al. Randomized controlled trial on hemifield eye patching and optokinetic stimulation in acute spatial neglect. Stroke. 2014;45(8):2465–2468. doi: 10.1161/STROKEAHA.114.006059
  62. Varako NA. [The emergence of neurorehabilitation. The first rehabilitation programmes]. Vestnik vosstanovitel'noj mediciny. 2014;(2):76-83. Russian.
  63. Zhang Y, Xing Y, Li C, et al. Mirror therapy for unilateral neglect after stroke: A systematic review. Eur J Neurol. 2022;29(1):358–371. doi: 10.1111/ene.15122
  64. Barbara JB, Anna MB, Kelly JR, et al. Effectiveness of Visual Scanning Training at Reducing Left Neglect: A Systematic Review. Open Access J Neurol Neurosurg. 2019;10(2):555781. doi: 10.19080/OAJNN.2019.10.555781
  65. Gandhi DB, Sterba A, Khatter H, et al. Mirror Therapy in Stroke Rehabilitation: Current Perspectives. Ther Clin Risk Manag. 2020;16:75–85. doi: 10.2147/TCRM.S206883
  66. Fong KNK, Ting KH, Zhang X, et al. The Effect of Mirror Visual Feedback on Spatial Neglect for Patients after Stroke: A Preliminary Randomized Controlled Trial. Brain Sci. 2023;13(1):3. doi: 10.3390/brainsci13010003
  67. Matsumoto N, Nakai R, Ino T, et al. Brain activity associated with the rubber foot illusion. Neurosci Lett. 2020;721:134820. doi: 10.1016/j.neulet.2020.134820
  68. Matys-Popielska K, Popielski K, Sibilska-Mroziewicz A. Study of the Possibility of Using Virtual Reality Application in Rehabilitation among Elderly Post-Stroke Patients. Sensors (Basel). 2024;24(9):2745. doi: 10.3390/s24092745
  69. Zinchenko YuP, Menshikova GYa, Bayakovsky YuM, et al. [Virtual reality technology in the context of world and national psychology: methodological aspects, achievements and prospects]. Nacional'nyj psikhologicheskij zhurnal. 2010;(2):64–71. Russian.
  70. Cavedoni S, Cipresso P, Mancuso V, et al. Virtual reality for the assessment and rehabilitation of neglect: where are we now? A 6-year review update. Virtual Real. 2022;26(4):1663–1704. doi: 10.1007/s10055-022-00648-0
  71. Shaikh MT, Younas U, Irshad I, et al. Rehabilitation of hemispatial neglect in stroke. J Pak Med Assoc. 2022;72(4):779–781. doi: 10.47391/JPMA.22-32
  72. Barrett AM, Houston KE. Update on the Clinical Approach to Spatial Neglect. Curr Neurol Neurosci Rep. 2019;19(5):25. doi: 10.1007/s11910-019-0940-0
  73. Guilbert A. Clinical assessment of unilateral spatial neglect dissociations and heterogeneities: A narrative synthesis. Neuropsychology. 2023;37(4):450–462. doi: 10.1037/neu0000841

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Степанов Г.К., Терентий Д.Д., Пропустина В.А., Скворцов А.А., Ковязина М.С., Варако Н.А., Букинич А.М., Васюра Е.В.,

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 78122 от 13.03.2020.


Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах